Binary Search Tree
A Search tree is called Binary Search if it satisfies BST property
and it's #children $\leq$ 2.
Binary Search Tree Property
Let $x$ be a node in a binary search tree. If $y$ is a node in the left subtree of $x$, then $y.key \leq x.key$. If $y$ is a node in the right subtree of $x$, then $y.key \leq x.key$.
Operations & timeComplexity
$h = height(tree)$
Member Function |
Running Time |
insert() |
$\Omicron(h)$ |
erase() |
$\Omicron(h)$ |
inorder_tree_walk |
$\Theta(n)$ |
find() |
$\Omicron(h)$ |
minimum() |
$\Omicron(h)$ |
maximum() |
$\Omicron(h)$ |
successor() |
$\Omicron(h)$ |
predecessor() |
$\Omicron(h)$ |
Warning
it is not guaranteed that $h = \Omicron(log(n))$
this binary search tree is not balanced
Implementation c++
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205 | #include <iostream>
using namespace std;
template<typename T>
class Set{
struct Node {
T key;
Node* parent;
Node* left;
Node* right;
Node(T key) {
this->key = key;
this->parent = 0;
this->left = 0;
this->right = 0;
}
};
Node* root;
unsigned int _size;
public:
Set(): root(0), _size(0) { //default constructor
}
void insert(T key) {
_insert(new Node(key)); //insert a key in to set (helper function)
}
void _insert(Node* &&node) { //
Node* y = 0;
Node* x = this->root;
while (x != 0) {
y = x;
if (node->key < x->key) {
x = x->left;
} else if (node->key == x->key) {
return;
} else {
x = x->right;
}
}
node->parent = y;
if (y == 0) // when tree is empty -> you could check with _size;
this->root = node;
else if(node->key < y->key) {
y->left = node;
node->parent = y;
} else {
y->right = node;
node->parent = y;
}
this->_size++;
}
Node* find(T key) {
Node* x = this->root;
while (x != 0 && x->key != key) {
if (x->key > key) {
x = x->left;
} else {
x = x->right;
}
}
return x;
}
Node* minimum() {
_minimum(this->root);
}
Node* _minimum(Node* x) {
while (x->left != 0) {
x = x -> left;
}
return x;
}
Node* maximum() { //returns Node* that with maximum key
return _maximum(this->root);
}
Node* _maximum(Node* &x) {
while (x->right != 0) {
x = x -> right;
}
return x;
}
Node* successor(Node* x) {
if (x->right != 0) {
return _minimum(x->right);
}
Node* y = x->parent;
while (y != 0 && x == y->right) {
x = y;
y = y->parent;
}
return y;
}
Node* predecessor(Node* x) {
if (x->left != 0) {
return _maximum(x->left);
}
Node* y = x->parent;
while (y != 0 && x == y->left) {
x = y;
y = y->parent;
}
return y;
}
unsigned int size() {
return _size;
}
void _inorder_tree_travel(Node*const &node) {
if (node == 0) return;
_inorder_tree_travel(node->left);
cout << node->key << ' ';
_inorder_tree_travel(node->right);
}
void inorder_tree_travel() {
_inorder_tree_travel(this->root);
}
void transplant(Node* u, Node* v) {
if (u->parent == 0) {
this->root = v;
} else if (u == u->parent->left) {
u->parent->left = v;
} else {
u->parent->right = v;
}
if (v != 0) {
v->parent = u->parent;
}
}
void erase(T key) {
_erase(find(key));
}
void _erase(Node* target) {
if (target == 0) return;
if (target->left == 0)
transplant(target, target->right);
else if (target->right == 0)
transplant(target, target->left);
else {
Node* y = _minimum(target->right);
if (y->parent != target) {
transplant(y, y->right);
y->right = target->right;
y->right->parent = y;
}
transplant(target, y);
y->left = target->left;
y->left->parent = y;
}
delete target;
_size--;
}
unsigned int height(Node* node) {
if (node == 0)
return 0;
unsigned int lDepth = height(node->left);
unsigned int rDepth = height(node->right);
if (lDepth > rDepth)
return lDepth + 1;
return rDepth +1;
}
unsigned int tree_height() {
return height(this->root);
}
};
int main() {
Set<int> s;
// if input's are random;
cout << "Naive Binary Search Tree implementation" << endl;
cout << "-------BEST-CASE(random inputs)--------" << endl;
cout << "input: 10,000 random integers" << endl;
for (int i = 0; i < 10000; i++) {
s.insert(rand()%1000000);
}
cout << "-----------------results----------------" << endl;
cout << "tree_height: " << s.tree_height() << endl;
cout << endl << endl <<endl;
cout << "------WORST-CASE(sorted_inputs)---------" << endl;
cout << "input: [1, 2, 3, ..., 10000]" << endl;
Set<int> worst;
for (int i = 1; i <= 10000; i++) {
worst.insert(i);
}
cout << "-----------------results----------------" << endl;
cout << "tree_height: " << worst.tree_height() <<endl;
return 0;
}
|
-
Analysis (Later..)
You can add some mathematical things here using KaTex
as a block tag
$$
T(N) = O(N*M)
$$
or as a inline tag $T(N) = O(N) $
Contributers
08.15.2019 jchrys